13t^2+20t-188=0

Simple and best practice solution for 13t^2+20t-188=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 13t^2+20t-188=0 equation:



13t^2+20t-188=0
a = 13; b = 20; c = -188;
Δ = b2-4ac
Δ = 202-4·13·(-188)
Δ = 10176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10176}=\sqrt{64*159}=\sqrt{64}*\sqrt{159}=8\sqrt{159}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-8\sqrt{159}}{2*13}=\frac{-20-8\sqrt{159}}{26} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+8\sqrt{159}}{2*13}=\frac{-20+8\sqrt{159}}{26} $

See similar equations:

| 4h-41=-9 | | 12(w-6)=0 | | 4(k-14)=-20 | | 9-1/3x=11 | | u=18-12 | | 9.64=2.97+x | | 3n+3=120 | | 8(t+8)=88 | | -3x(2x-19)=-3x | | 9(j-5)=90 | | x^2-4*x+3=15 | | 8q+6=46 | | (180-4x)+(180-6x)+2x=180 | | 37-u=47 | | 1x+8+6x+-5+2x+3=180 | | 22x-130+58=180 | | (180-8x)+(180-9x)+5x=180 | | 39+u=31 | | 45-v=36 | | 3y/9=27/y | | u-2=41 | | t+28=73 | | (1.7)^x=4 | | 2(x+1)-3(2-x)=x+3(2x+1) | | 10.x=5.6 | | x^{2}-13x+59=0 | | 4x2+2x-106=2x-6 | | Y=6y+4 | | (0.3y+1.1)-(0.5y+1)=5.6-y | | (18x-11)-(10x+6)=6x | | (6m-4)-(7m+7)-m=1 | | 2w²-11w+40=40 |

Equations solver categories